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We calculate the force on a periodic array of spheres in a viscous flow at small
Reynolds number and for small volume fraction. This generalizes the known results
for the force on a periodic array due to Stokes flow (zero Reynolds number) and the
Oseen correction to the Stokes formula for the force on a single sphere (zero volume
fraction). We use a generalization of Hasimoto’s approach that is based on an analysis
of periodic Green’s functions. We compare our results to the phenomenological ones
of Kaneda for viscous flow past a random array of spheres.

1. Introduction
Inertial effects on particle motion in low-Reynolds-number flow are of interest in

many applications but their theoretical analysis is rather complicated, even for a
single particle, as shown by Lovalenti & Brady (1993). In this paper we calculate
inertial corrections to the hydrodynamic force on a fixed periodic array of spheres in
steady, viscous and incompressible flow. All spheres have the same radius a and their
centres are placed on a cubic lattice of span L. The volume fraction

c = 4πa3/3L3 (1.1)

occupied by the spheres is assumed to be small as is the Reynolds number Re = U0a/ν,
which is based on the average flow rate U 0 of the fluid past the spheres, with U0 = |U 0|
and ν the kinematic viscosity.

When both the volume fraction and the Reynolds number are infinitesimal, we
have viscous flow past a single sphere with no inertial effects. The force is then given
by the Stokes formula (Batchelor 1967)

F = 6πµaU 0. (1.2)

When the Reynolds number is small, inertial effects appear with the Oseen correction

F = 6πµaU 0(1 + 3
8
Re). (1.3)

This was analysed in detail by Proudman & Pearson (1957) using matched asymptotic
expansions.

When the Reynolds number is zero and the volume fraction c occupied by the peri-
odic array of spheres is small, the force on the array was studied by Hasimoto (1959)
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and his result for the simple cubic lattice is

F = 6πµaU 0(1 + 1.7601c1/3). (1.4)

This is one of several results concerning dilute suspension of small spheres in a
viscous fluid (Batchelor 1972; Brinkman 1947; Childress 1972; Saffman 1973; Zick
& Homsy 1982).

In this paper we calculate from first principles the small inertial corrections to
Hasimoto’s formula (1.4) when the Reynolds number is small but not zero, and the
volume fraction c is also small but not zero. Kaneda (1986) studied this problem for a
random array of fixed spheres. He started with Brinkman’s equation (Brinkman 1947)
that describes flow in a fixed random suspension of spheres, an effective equation, and
added to it inertial effects just as in the Oseen calculation. The Brinkman equation is
reasonably well understood as an effective equation (Hinch 1977; Rubinstein 1986),
but a mathematical justification for it, especially with inertial effects, is hard and
unavailable. Kaneda (1986) obtained the following formula for the drag:

F = 6πµaU 0[1 + ReF̂(S)], (1.5)

where

F̂(S) =
3

8

�
(2S + 1)(4S + 1)1/2 − 4S2 ln

(4S + 1)1/2 + 1

(4S + 1)1/2 − 1

�
, (1.6)

and S = 9c/(2Re2). This result is consistent with Oseen’s formula (1.3) when c = 0
and with Brinkman’s formula

F = 6πµaU 0

�
1 +

3c1/2

√
2

�
(1.7)

when Re = 0. Note the characteristic difference between fixed periodic and random
arrays where the force depends on c1/3 in the periodic case and on c1/2 in the random
case, for c small.

Inertial effects and interacting sphere effects are not additive, even when the
Reynolds number and volume fraction are small, because the equations are nonlinear.
This is clearly seen in Kaneda’s result (1.5) although it is not discussed in detail in
Kaneda (1986). In figure 1 we plot the relative difference between the additive effects
of inertia and particle flow interaction, and Kaneda’s formula (1.5). This relative
difference is defined as

E(Re, c) =

(
3
8
Re+ 9

2
c
�
− ReF̂(S)

ReF̂(S)
, (1.8)

which can also be written in the form

E(Re, c) =

(
3
8

+ S1/2
�

F̂(S)
− 1.

This implies that E(Re, c) is a constant along S = constant, i.e. Re/c1/2 = constant
in the (Re, c1/2)-plane. This is not very clear from the black and white figure 1, but
can be seen easily from a coloured picture in which the colour shows the height of
E(Re, c). We note from the figure that E is positive, so that fluid–particle interaction
reduces drag, and that it can be as large as 40%. A similar ‘screening’ effect is
observed in the calculation of heat transfer in a dilute fixed bed of spheres at a fixed
temperature (Acrivos, Hinch & Jeffrey 1980).

We analyse here the periodic version of Kaneda’s problem starting from the
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Figure 1. Surface plot of the relative difference between the additive effects of inertia and particle
flow interaction, and Kaneda’s results (1.5).

steady Navier–Stokes equations and using matched asymptotic expansions (Lager-
strom 1988), combined with a generalized form of Hasimoto’s method of periodic
Green’s functions. For simplicity we consider only the case of a simple cubic lattice
of spheres with centres at lattice points xn = L(n1e1 + n2e2 + n3e3) for n = (n1, n2, n3)
integers. Our main result is the following formula for the force on the array:

F = 6πµaU 0

(
I + 3

8
ReI + 3

2
Re[C(θ)I +M(θ)]

�
+ ... (1.9)

where C(θ) and M(θ) = (Cij(θ))3×3 are given by (6.23) to (6.25) and I is the identity
matrix; θ = LRe/a and in terms of volume fraction c, θ = Re/(3c/4π)1/3. When
inertia is negligible and c is small we show that (1.9) reduces to Hasimoto’s formula
(1.4). In the opposite limit, where inertial effects dominate particle interaction, (1.9)
reduces to the Oseen formula (1.3). A table of values for (1.9) is provided in §8.

In the intermediate regime where both inertial and particle interaction effects are
important, (1.9) is not the simple addition of the two effects. This is shown in figure
2 which is qualitatively similar to figure 1. We plot the relative difference between the
additive Oseen–Hasimoto effects and our result (1.9) as a function of particle radius
a and Re, defined similarly to (1.8), which can be written as

E(Re, c) =
1.1735(4π/3)1/3

θ[C(θ) + C11(θ)]
− 1.

The error depends on Re and c through the parameter θ. From figure 2, we see
clearly the drop in the relative drag correction, the screening effect that is due to the
fluid–particle interaction. The wiggles in the figure are due to numerical errors in
calculating C(θ) and C11(θ).

The paper is organized as follows. In the next section we formulate the problem.
In §3 we review briefly Hasimoto’s method. Sections 4 to 7 are devoted to the
derivation of our results. In §8 we present some numerical results that illustrate
how the force and the average velocity are related by the new formula (1.9). Some
technical mathematical calculations are presented in the Appendices.
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Figure 2. Surface plot of the relative difference between the additive Hasimoto-Oseen effects and
our result (1.9).

2. Formulation of the problem
We consider a periodic array of identical rigid spherical particles of radius a in a

Newtonian fluid of viscosity µ and density ρ, driven by an average pressure gradient.
We wish to find the average fluid flow that results when a no-slip boundary condition
is satisfied on the surface of the spherical particles. The flow satisfies the steady
Navier–Stokes equations outside the particle array

µ∇2u− ∇p = ρ(u · ∇)u,

∇ · u = 0 for | x− xn |> a, ∀n,
u = 0 for | x− xn |= a, ∀n,

9>=>; (2.1)

with the requirements that u and ∇p be periodic. Here ∇2 is the Laplace operator.
Our goal is to calculate the inertial correction to Hasimoto’s formula (1.4), which
gives the relation between the average flow rate U 0 and the drag force per particle
F :

U 0 = |V |−1

Z
V

u(x)dx,

F =

Z
|x|=a

Σ · n ds.

9>>>=>>>; (2.2)

Here V = [−L/2, L/2]3 − {|x| < a} is the cube of side L minus the sphere of radius
a and Σ is the viscous stress tensor

Σij = −pδij + 2µeij ,

with

eij =
1

2

�
∂ui

∂xj
+
∂uj

∂xi

�
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the rate of strain tensor. It is convenient to consider F as given and to attempt to
determine U 0. In the near-linear regime, where inertial effects are small, this relation
is invertible.

Let us consider the flow as a perturbation of a uniform one due to the presence of
the particle array. If the Renolds number Re = U0a/ν, ν = µ/ρ, is not zero, then the
flow is not correctly described by the Stokes equations (Batchelor 1972; Lovalenti &
Brady 1993; Proudman & Pearson 1957) in the wake behind the particles, the Oseen
region. The local inertia term is

ρ(u · ∇)u = −ρ(U 0 · ∇)(U 0 − u) + ρ((U 0 − u) · ∇)(U 0 − u), (2.3)

and when we have a dilute suspension, U 0 − u may be approximated by a Stokeslet
placed at a sphere centre. Then, the first of the two terms on the right-hand side
of (2.3) behaves like ρU2

0a/r
2, whereas the second behaves like ρU2

0a
2/r3. Compared

with the viscous force, µU0a/r
3, the second term is always negligible if Re � 1.

However, the ratio of the first term and the viscous force is

ρU2
0a

r2

�
µU0a

r3
=
r

a
Re,

and is not small when r ∼ O(a/Re), which is called the Oseen distance. In our case,
the distance between particles is L and so when Re ∼ O(a/L) = O(c1/3) the flow is not
correctly described by the Stokes equations. We have to deal with the Navier–Stokes
equations. We will use matched asymptotic expansions and Hasimoto’s periodic
Green’s functions for this purpose. His work is based on the Stokes equations

µ∇2U − ∇p = 0,

∇ · u = 0 for | x− xn |> a, ∀n,
u = 0 for | x− xn |= a, ∀n,

9>=>; (2.4)

and is reviewed briefly in the next section.

In the rest of the paper we will deal with the dimensionless form of the Navier–
Stokes equations

∇̄2ū− ∇̄p = Re(ū · ∇̄)ū,

∇̄ · ū = 0 for | x̄− x̄n |> 1, ∀n,
ū = 0 for | x̄− x̄n |= 1, ∀n,

9>=>; (2.5)

where the dimensionless quantities are defined by

x̄ =
x

a
, ū =

u

U0

, p̄ =
p

µU0/a
, Re =

ρaU0

µ
,

and

x̄n =
L

a
(n1, n2, n3).

The average flow velocity is now e0 = U 0/U0 which is a unit vector. We will omit the
bars in what follows.
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3. Brief review of Hasimoto’s method
Hasimoto (1959) uses the periodic fundamental solutions of problem (2.4) defined

by

µ∇2u = ∇p+ F
X
n

δ(x− xn),

∇ · u = 0.

9>=>; (3.1)

This may be used to construct a systematic expansion for the flow for small volume
fraction (as in Sangani & Acrivos 1983 for the analogous diffusion problem). It is
also the lowest-order term in this expansion and it is then called the point-force
approximation, since the spherical inclusions are replaced by point forces (3.1). Let

u(x) =
X
k

ûke
−2πix·k, (3.2)

−∇p =
X
k

p̂ke
−2πix·k, (3.3)

where k has integer components. Then, from (3.1)

−4π2µ | k |2 ûk = −p̂k + F ,

k · ûk = 0,

k × p̂k = 0.

Therefore, u and −∇p have the representations

−(∇p)j = Fj − (4π)−1Fl
∂2S1

∂xl∂xj
,

uj = U0j − (4πµ)−1

�
FjS1 − Fl

∂2S2

∂xl∂xj

�
,

for j = 1, 2, 3. Here

S1(x) = π−1
X
k 6=0

| k |−2 e−2πix·k,

S2(x) = −(4π3)−1
X
k 6=0

| k |−4 e−2πix·k.

In order to apply this fundamental solution to problem (2.4), it is necessary to get
expansions for S1 and S2 for |x| � L. If we scale coordinates by L, or set L = 1, then

S1 =
1

| x | − C + O(| x |2), (3.4)

∂2S2

∂xl∂xj
= − xjxl

2 | x |3 +

�
1

2 | x | −
C

3

�
δjl + O(|x|2), (3.5)

uj = U0j−
1

4πµ

�
Fj

�
1

2 | x | −
2C

3

�
+

F · x
2 | x |3xj

�
+ O(|x|2). (3.6)

For a simple cubic lattice the constant C is equal to 1.7601(4π/3)1/3. Moreover, the
boundary conditions in (2.4) are to lowest order in a small-volume-fraction expansion
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replaced by

〈u〉 =
1

4πa2

Z
|x|=a

u ds = 0, (3.7)

as noted by Hasimoto (1959) and carried out in detail for the analogous diffusion
problem in Sangani & Acrivos (1983). Substituting (3.6) in (3.7) gives

U 0 = (4πµ)−1F

�
2

3a
− 2C

3

�
(3.8)

and this determines F as in (1.4).

4. Inner expansion
We will use the method of matched asymptotic expansions to solve (2.5). We start

with an inner expansion of the form

u = u0 + Reu1 + o(Re), (4.1)

p = p0 + Rep1 + o(Re). (4.2)

Inserting these into (2.5) yields to O(Re0)

∇2u0 − ∇p0 = 0,

∇ · u0 = 0 for | x− xn |> 1, ∀n,
u0 = 0 for | x− xn |= 1, ∀n;

9=; (4.3)

and to O(Re1)

∇2u1 − ∇p1 = (u0 · ∇)u0,

∇ · u1 = 0 for | x− xn |> 1, ∀n,
u1 = 0 for | x− xn |= 1, ∀n.

9=; (4.4)

The conditions imposed on (u0, p0), (u1, p1) do not determine them uniquely. Addi-
tional conditions are provided by matching them to the outer expansion. Specifically,
we know that u0 must agree with the leading term of the outer expansion for |x| large.
Since the flow is a perturbation of a uniform one, condition (2.2) in dimensionless
form is

u0 → e0 as |x| → ∞.
Equations (4.3) with this condition are just the Stokes equations for flow past a
sphere. The solution is

u0 = e0 −
3

4

�
e0

|x| +
e0 · x
|x|3 x

�
+ O(|x|−3) (4.5)

for |x| large. This will now provide a matching condition for the first-order outer
expansion and it will give the leading-term contribution to the force, which is exactly
the Stokes force. The first-order outer expansion will, moreover, provide boundary
conditions for the first-order inner approximation by matching, and this will determine
it. We can then calculate the first-order inertial force effect in Hasimoto’s formula.

5. Outer expansion
From the scaling analysis we carried out in §2, we know that inertial effects are

important when Re ∼ O(a/L). Let us set L = 1 and assume that Re = θa with θ of
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Stokes region

‘Near’ Oseen region
‘Far’ Oseen region

Figure 3. The Oseen flow region for a single particle.

order one. The outer expansion is, therefore, an expansion of solutions of (2.5) for
small Re and small volume fraction.

The small-volume-fraction part of the outer expansion leads to the point force
approximation, as noted in §3. We will not work this out in detail here (cf. Sangani &
Acrivos 1983). We will begin instead with the point-force approximation. This means
that the dimensionless equations (2.5) are to hold throughout space and the particles
are replaced by a distribution of forces at the sphere centres xn:

∇2u− ∇p = Re(u · ∇)u+ F
X
n

δ(x− xn) + · · ·,

∇ · u = 0.

9>=>; (5.1)

This is consistent to O(Re) with the outer expansion that follows, keeping in mind
that Re = θa with θ of order one. To construct the outer expansion we need to
introduce outer variables

x̃ = Rex, F̃ = ReF , p̃ =
p

Re
.

Equation (5.1) is then

∇̃2u− ∇̃p̃ = (u · ∇̃)u+ F̃
X
n

δ(x̃− x̃n) + · · ·,

∇̃ · u = 0.

9>=>; (5.2)

where x̃n is θ(n1, n2, n3) with (n1, n2, n3) integers (we have set L = 1).
We now turn to the form of the outer expansion. We consider first the Oseen

analysis for a single particle. We have to divide the flow into several regions. One
is the Stokes and the other the Oseen region, which we must divide further into the
Oseen ‘near’ and ‘far’ regions, as shown in figure 3. There are two reasons for doing
this. The first is that the ‘far’ Oseen region is different in the periodic case since the
other particles will be felt. The second is that the average flow velocity of the ‘near’
Oseen region is different from that in the ‘far’ Oseen region. The average flow velocity
over the full flow domain, and the ‘far’ Oseen region, is the uniform flow e0. But we
know from the solution of the Oseen equation (Brenner & Cox 1963) that the average
flow velocity over the ‘near’ Oseen region is (1 + 3

8
Re)e0. This, in fact, is a convenient

way to define what we mean by ‘near’ and ‘far’ Oseen regions. We therefore consider
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the following outer expansion for the velocity:

u = e0 + 3
8
Ree0 + ReU 1 + o(Re). (5.3)

We could combine the second and third terms on the right but with this definition
U 1 has average zero. For the pressure we consider the expansion

−∇̃p̃ = (1/θ)3F̃ − Re∇̃P1 + o(Re).

Substituting these expansions into the outer equation (5.2), we find that (U 1, P1)
satisfy

∇̃2U 1 − ∇̃P1 = (e0 · ∇̃)U 1 + F

"X
n

δ(x̃− x̃n)− (1/θ)3

#
,

∇̃ ·U 1 = 0.

9>=>;
Since the leading term for the force F is 6πe0 and additional terms do not contribute
to the velocity U 1 to O(Re) in (5.3), we simplify further to

∇̃2U 1 − ∇̃P1 = (e0 · ∇̃)U 1 + 6πe0

"X
n

δ(x̃− x̃n)− (1/θ)3

#
,

∇̃ ·U 1 = 0.

9>=>; (5.4)

This is exactly the Oseen version of equations (3.1), with zero average fields. We solve
for (U 1, P1) in the next section by generalizing Hasimoto’s method.

6. The generalized periodic fundamental solution

We will deal with (5.4) in the form

∇̃2U 1 − ∇̃P1 = (e0 · ∇̃)U 1 + F
X
n

δ(x̃− x̃n),

∇̃ ·U 1 = 0.

9>=>; (6.1)

where F now stands for 6πe0. This is just (5.4) with the mean pressure gradient
included in the new P1.

As in Hasimoto (1959), we expand in Fourier series

U 1(x̃) =
X
k

ûke
−2πix̃·k, (6.2)

−∇̃P1 =
X
k

p̂ke
−2πix̃·k. (6.3)

Here

k =
1

θ
(k1, k2, k3),

with ki integers. In the rest of this section we will drop the tilde to simplify writing.
We will pick it up again in the next section. Using the Fourier expansion of the
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periodic delta functions X
n

δ(x− xn) =
1

θ3

X
k

e−2πix·k, (6.4)

in (6.1) we have

−4π2|k|2ûk + p̂k −
F

θ3
= −2πi(e0 · k)ûk, (6.5)

k · ûk = 0, (6.6)

k × p̂k = 0. (6.7)

For k = 0, (6.5) gives

p̂0 =
F

θ3
, (6.8)

which is the mean pressure gradient that balances the point forces. For k 6= 0 we
have

k · p̂k =
k · F
θ3

, (6.9)

and from (6.5) and (6.7)

p̂k =
(k · F )k

θ3|k|2 , (6.10)

ûk =
F − (k · F )k/| k |2

2πiθ3(u0 · k)− 4π2θ3 | k |2 . (6.11)

With these Fourier coefficients we have the representations

−(∇P1)j =
Fj

θ3
− (4π)−1Fl

∂2S1

∂xl∂xj
, (6.12)

U1j = e0j − (4π )−1

�
FjS̃1 − Fl

∂2S̃2

∂xl∂xj

�
, (6.13)

where

S1 = π−1θ−3
X
k 6=0

| k |−2 e−2πix·k, (6.14)

S̃1 = π−1θ−3
X
k 6=0

�
| k |2 − ie0 · k

2π

�−1

e−2πix·k, (6.15)

S̃2 = −(4π3)−1θ−3
X
k 6=0

| k |−2

�
| k |2 − ie0 · k

2π

�−1

e−2πix·k. (6.16)

These expressions are similar to (6.12)–(6.16) for Stokes equations. The lattice sum
for S̃2 is absolutely convergent everywhere, but S1 and S̃1 are only weakly convergent,
in the sense of distributions. To continue with Hasimoto’s approach for calculating
the flow past small spheres we must estimate S1, S̃1 and S̃2 for small | x |� 1.
Most of the work in estimating S̃1 and ∂2S̃2/∂xl∂xj as | x |→ 0 is in extracting their
singular part, which is the key point that makes Hasimoto’s method successful. As
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in Hasimoto (1959), we will use the Ewald summation technique to evaluate S̃1 and
∂2S̃2/∂xl∂xj .

To carry out the small-| x | expansion of the lattice sums we use the identity

1

(|k|2 − (1/2π)ie0 · k)m
=

πm

Γ (m)

Z ∞
0

βm−1e−π(|k|2−(1/2π)ie0·k)βdβ, (6.17)

where m is an integer. We now introduce a more general lattice sum σm and transform
it as follows:

σm(e0, θ, x) =
X
k 6=0

e−2πix·k

(| k |2 −(1/2π)ie0 · k)m

=
πm

Γ (m)

X
k 6=0

Z ∞
0

βm−1 exp

�
−π | k |2 β − 2πik ·

�
x− βe0

4π

��
dβ

=
πm

Γ (m)

Z ∞
0

βm−1

"X
k

exp

�
−π | k |2 β − 2πik ·

�
x− βe0

4π

��
− 1

#
dβ.

(6.18)

Note that σm implicitly depends on θ through k. We will also use a slight variant of
the Poisson summation formula (Courant & Hilbert 1953)X
k

exp

�
−π | k |2 β − 2πik ·

�
x− βe0

4π

��
=θ3β−3/2

X
n

exp

�
−π | x− xn − βe0/4π |2

β

�
,

(6.19)

in three-dimensional space. We now split the integral in (6.18) into two parts. One
is from 0 to α and we use (6.19) on it, and the other is from α to ∞, where α is a
suitably chosen constant. After some changes of variables we get

σm(e0, θ, x) =
πmαm

Γ (m)

"
α−3/2θ3

Z ∞
1

ξ−m+1/2 exp

�
−π | x− α

4πξ
e0 |2

ξ

α

�
dξ

+θ3α−3/2
X
n6=0

Z ∞
1

ξ−m+1/2 exp

�
−π | x− xn −

α

4πξ
e0 |2

ξ

α

�
dξ − 1

m

+
X
k 6=0

e−2πix·k
Z ∞

1

ξm−1 exp
�
−πα | k |2 ξ + 1

2
αi(k · e0)ξ

�
dξ

#
. (6.20)

We can now estimate S̃1 and ∂2S̃2/∂xl∂xj as | x |→ 0. This is much more complicated
than in Hasimoto’s case. We give the main results here and carry out the detailed
calculations in Appendix A:

S̃1 =
1

| x | +
x · e0

2 | x | − C(θ, e0) + O(| x |), (6.21)

∂2S̃2

∂xl∂xj
= − xjxl

2 | x |3 +
1 + 1

4
x · e0

2 | x | δjl

−1

4

�
xjxl(x · e0)

2 | x |3 − xje0l + xle0j

2 | x |

�
+ Clj(θ, e0) + O(| x |). (6.22)
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Here

C =
2

α1/2
e−α/16π +

α

θ3
− 1

α1/2

X
n6=0

Z ∞
1

ξ−1/2 exp

�
−π | xn +

α

4πξ
e0 |2

ξ

α

�
dξ

− α

θ3

X
k 6=0

Z ∞
1

exp
�
−πα | k |2 ξ + 1

2
αi(k · e0)ξ

�
dξ, (6.23)

Cjj = − 1

α1/2
(1 + e−α/16π)− α1/2

32π
e2

0j

Z ∞
1

ξ−3/2e−α/16πξdξ

− π

2αα1/2

X
n6=0

Z ∞
1

ξ1/2

�
x2
nje
−π|xn|2ξ/α+(xnj +

α

4πξ
e0j)

2 exp

�
−π | xn+

α

4πξ
e0 |2

ξ

α

��
dξ

+
1

4α1/2

X
n6=0

Z ∞
1

ξ1/2

�
e−π|xn|

2ξ/α + exp

�
−π | xn +

α

4πξ
e0 |2

ξ

α

��
dξ

+
πα2

2θ3

X
k 6=0

k2
j

Z ∞
1

ξe−πα|k|
2ξ(1 + eαi(k·e0)ξ/2)dξ

+
1

8π3θ3

X
k 6=0

k2
j (k · e0)

2

| k |4 (| k |2 −(1/2π)ik · e0)2
(j = 1, 2, 3), (6.24)

Clj = −α
1/2

32π
e0le0j

Z ∞
1

ξ−3/2e−α/16πξdξ

− π

2αα1/2

X
n6=0

Z ∞
1

ξ1/2

�
xnj +

α

4πξ
e0j

��
xnj +

α

4πξ
e0l

�
exp

�
−π | xn+

α

4πξ
e0 |2

ξ

α

�
dξ

+
πα2

2θ3

X
k 6=0

kjkl

Z ∞
1

ξ exp

�
−πα | k |2 ξ +

1

2
αi(k · e0)ξ

�
dξ

+
1

8π3θ3

X
k 6=0

kjkl(k · e0)
2

| k |4 (| k |2 −(1/2π)ik · e0)2
(j 6= l). (6.25)

We note that the last term in (6.24) or (6.25) is new and is needed in calculating
∂2S̃2/∂xl∂xj . Also, since the sum for S̃2 is

σ̄ =
X
k 6=0

e−2πix·k

| k |2 (| k |2 −(1/2π)ie0 · k)

it is not possible to extract the singular part from it directly. However, we can write
it in the form

σ̄ =
1

2

"X
k 6=0

�
1

| k |4 +
1

(| k |2 −(1/2π)ie0 · k)2

�
e−2πik·x

+
1

4π2

X
k 6=0

(e0 · k)2

| k |4 (| k |2 −(1/2π)ie0 · k)2
e−2πik·x

#
,

and in terms of σm

σ̄ = 1
2
(σ2(0, θ, x) + σ2(e0, θ, x)) +

1

8π2

X
k 6=0

(e0 · k)2

| k |4 (| k |2 −(1/2π)ie0 · k)2
e−2πik·x. (6.26)
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Now we can estimate σ2(0, θ, x) and σ2(e0, θ, x) together with their second-order
derivatives by the formulas above. Moreover, the last term and its second derivatives
are all absolutely convergent.

From (6.21) and (6.22), we get the expansion for U 1 as |x| → 0:

U1j = e0j − (4π)−1

�
Fj

2 | x | (1 + 3
4
x · e0)− FjC +

F · x
2 | x |3xj − FlClj

+
1

4

�
(F · x)(x · e0)

2 | x |3 xj −
F · e0

2 | x |xj −
F · x
2 | x |e0j

��
. (6.27)

7. Calculation of the force
The expression (6.27) for the principal term of the outer expansion for the velocity

gives the solution of (5.4) for |x̃| small. Using the tilde variables again we have

U 1 = −3

4

�
e0

|x̃| +
e0 · x̃
|x̃|3 x̃

�
+ 3

2
(Ce0 + e0 ·M)

− 3

16

�
3x̃ · e0

|x̃| e0 +
(e0 · x̃)2

|x̃|3 x̃− x̃

|x̃| −
e0 · x̃
|x̃| e0

�
+ o(1), (7.1)

as |x̃| → 0, where M = (Clj)3×3 is a matrix. Changing to the inner variables we obtain
for the outer expansion of u:

u = e0 −
3

4

�
e0

|x| +
e0 · x
|x|3 x

�
+ 3

2
Re (Ce0 + e0 ·M) + 3

8
Ree0

− 3

16
Re

�
3x · e0

|x| e0 +
(e0 · x)2

|x|3 x− x

|x| −
e0 · x
|x| e0

�
+ O(Re2). (7.2)

The main term, the first term on the right-hand side, has already been matched with
the zero-order inner solution. By the matching principle, the remaining terms give the
following condition at infinity for the first-order inner approximation (u1, p1):

u1 ;
3
2

(Ce0 + e0 ·M) + 3
8
e0 −

3

16

�
3x · e0

|x| e0 +
(e0 · x)2

|x|3 x− x

|x| −
e0 · x
|x| e0

�
, (7.3)

as |x| → ∞. Equation (4.4) together with this condition determines (u1, p1) uniquely.
We will not solve for (u1, p1) explicitly here. Instead, we will use the result of Brenner
& Cox (1963) for the force on the particle due to (u1, p1), as determined by the above
conditions: 9π(Ce0 + e0 · M) + 9

4
πe0. This means that we do not need an improved

version of formula (3.7), which is a considerable simplification. We note that the
terms inside the second parentheses of (7.3) are odd in x and thus do not contribute
to the force. Adding this force to the zero-order dimensionless force we get the drag:

F = 6πe0

(
I + 3

8
ReI + 3

2
Re(CI +M)

�
+ ... (7.4)

where C and M = (Cij)3×3 are given by (6.23)–(6.25) and I is the identity matrix.
This is the main result of our paper. We see that F and e0 are related in a

nonlinear way now, as expected. Furthermore, the drag depends on the volume
fraction (through a) and on the Reynolds number. It is thus much more complicated
than both Hasimoto’s (1.4) and Oseen’s (1.3) formulas. In Appendix B we show
that our formula for the drag reduces to the Hasimoto and Oseen formulas, in the
appropriate limit.
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θ = Re/a Formula (8.1) Formula (8.2)

0.05 57.46 56.75
0.1 28.91 28.37
0.2 14.63 14.19
0.3 9.869 9.458
0.6 5.090 4.729
1.0 3.159 2.837
2.0 1.690 1.419
3.0 1.199 0.946
5.0 0.807 0.567

10.0 0.519 0.284
15.0 0.428 0.189

100.0 0.396 0.028

Table 1. Typical results for ∆F from our formula (8.1) and from Hasimoto’s formula (8.2)

8. Numerical calculations
We now calculate numerically the coefficients C and Cij , given by (6.23)–(6.25),

and then the drag (7.4), for various values of the volume fraction and the Reynolds
number. To simplify the computations we choose e0 = (1, 0, 0). This means that we
do not discuss directional properties of the force, which are, however, important in
distinguishing Stokes from Oseen flows.

The numerical results are stated in terms of the differential drag coefficient ∆F ,
defined by

F = 6πe0(I + ∆FRe).

This is usually a 3× 3 matrix, but with our choice of e0 we only need (∆F )11, so we
keep only the one-one component

F = 6πe0(1 + ∆FRe).

From (7.4) we have

∆F = 3
8

+ 3
2
(C + C11), (8.1)

and C , C11 are given by (6.23) and (6.24). Thus, ∆F depends on e0 explicitly and on
Re and a implicitly through their ratio θ = Re/a.

The results of our numerical calculations for ∆F in (8.1) are summarized in table
1. For comparison, we also list the corresponding data from Hasimoto’s formula as
θ varies:

∆F = 1.7601

�
4

3
π

�1/3

θ−1. (8.2)

For Oseen’s formula the differential drag coefficient is equal to 3
8

for all θ.
Let us examine our results for three different cases, depending on the magnitude

of θ.

Case 1: θ small

In this case our result should tend to the Hasimoto’s formula (1.4). This is shown
in figure 4(a). The analytical behaviour of ∆F for θ small is discussed in Appendix B.
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Figure 4. ∆F versus θ for (a) θ small, (b) θ large, (c) intermediate values of θ. The solid line is for
∆F computed from our formula and the dotted line in (a) and (b) is from Hasimoto’s formula.

Case 2: θ large

We expect that our results tend to Oseen’s formula in this case. This is shown in
figure 4(b) where the dotted line is Oseen’s formula. We do not show ∆F for θ very
large because the numerical calculation of the lattice sums converges very slowly. But
the agreement observed in figure 4(b) is good.

Case 3: θ intermediate

Our result is shown in figure 4(c). We see that when the Reynolds number Re and
the dimensionless particle radius a, or c1/3 with c the volume fraction, are comparable
in magnitude and small, the change in the drag F depends on the ratio θ = Re/a
in a complicated way. As explained in the introduction, the inertial and particle
interaction effects are not simply additive. We note also that ∆F is a full matrix for
most e0 because there is directional sensitivity when inertial effects are included. This
is to be expected since we approximate the flow around each particle by an Oseen
flow which is not fully symmetric.

It is well known that in expressions generated by the Ewald summation technique,
such as (6.23) and (6.24), the parameter α does not affect the value of C and Cjj . This
has been verified in several cases in our numerical calculations. However, different
choices of α affect the numerical convergence of C and Cjj greatly. The optimal α
for fast convergence is hard to determine in advance. Our analysis of the limiting
behaviour of C and Cjj in Appendix B suggests that when θ is small, α should be
comparable to θ2 and when θ is large, α should be comparable to θ. In between, we
simply take (θ2 + θ)/2.

As noted in the introduction, our results are in agreement with the phenomenolog-
ical analysis of Kaneda (1986). The main qualitative difference is that the inertia-to-
particle interaction parameter is θ = Re/a (or Re/c1/3) in this paper and is S = c/Re2

(or Re/c1/2) for fixed random arrays in Kaneda (1986). This characteristic difference
occurs, however, even without inertial effects. For Stokes flow (Saffman 1973), the
relation between average force and average velocity for a fluid–particle system is a
different function of concentration for different types of suspensions. In terms of
∆U = (U0 −U)/U0, it is known that:

(i) for fixed periodic arrays (Hasimoto’s case for a simple cubic lattice)

∆U ∼ 1.7601c1/3,
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(ii) for fixed random arrays (Brinkman’s case)

∆U ∼ 3√
2
c1/2,

(iii) for free random arrays (Batchelor’s sedimentation case)

∆U ∼ 6.55c.

These relations show that fluid–particle interaction is stronger for fixed periodic ar-
rays than for fixed random arrays, which is in turn stronger than that for random
suspensions, at small volume fraction. We may expect, therefore, that inertial cor-
rections to Batchelor’s formula for sedimentation should depend on the parameter
θ = Re/c. As far as we know, this problem has not been analysed.

We would like to acknowledge the referee’s useful comments. H. C. is supported by
US Department of Energy Grant DE-FG02-92ER14275. G. P. is supported by NSF
Grant DMS 96-22854 and AFOSR F49620-94-1-0436.

Appendix A. Asymptotics for generalized lattice sums
Asymptotics for S̃1

From its definition (6.5) we have

S̃1 = π−1θ−3σ1

=
1

α1/2

Z ∞
1

ξ−1/2 exp

�
−π | x− α

4πξ
e0 |2

ξ

α

�
dξ

+
1

α1/2

X
n6=0

Z ∞
1

ξ−1/2 exp

�
−π | −x+ xn +

α

4πξ
e0 |2

ξ

α

�
dξ

− α

θ3
− α

θ3

X
k 6=0

Z ∞
1

exp

�
−πα | k |2 ξ + 1

2
αi(k · e0)ξ

�
dξ, (A 1)

The last three terms tend to finite limits as |x| → 0. So we need to analyse the first
term.

Let

f(e0, x) =
1

α1/2

Z ∞
1

ξ−1/2 exp

�
−π | x− α

4πξ
e0 |2

ξ

α

�
dξ.

Then by a change of variables

f(e0, x) =
1

|x|e
x/2·e02

Z ∞
|x|/α1/2

exp

�
−π
�
s2 +

|x|2
16π2s2

��
ds,

If we let

g(t) = 2

Z ∞
t/α1/2

exp

�
−π
�
s2 +

t2

16π2s2

��
ds,

then

g(t) = 2

 Z ∞
0

−
Z t/α1/2

0

!
exp

�
−π
�
s2 +

t2

16π2s2

��
ds = g1(t)− g2(t).
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Clearly g1(t) is an even function of t and g2(t) is odd. Thus

g(0) = g1(0) = 2

Z ∞
0

e−πs
2

ds = 1,

g′(0) = −g′2(0) = − lim
t→0

g2(t)

t
= − 2

α1/2
e−α/16π,

g′′(0) = g′′1 (0) 6= 0.

Expanding in a Taylor series we have

g(t) = 1− 2

α1/2
e−α/16πt+ O(t2).

Collecting all these estimates we find that as |x| → 0

f(e0, x) =
1

|x| (1 + 1
2
x · e0 + O(|x|2))

�
1− 2

α1/2
e−α/16π|x|+ O(|x|2)

�
=

1

|x| +
x · e0

2|x| −
2

α1/2
e−α/16π + O(|x|). (A 2)

This together with (A 1) gives the estimate (6.21) for S̃1.

Asymptotics for ∂2S̃2/∂xl∂xj

We use (6.26) so that the derivatives of S̃2 are

∂2S̃2

∂xl∂xj

����
x=0

= −(4π3)−1θ−3 1
2

lim
|x|→0

∂2

∂xl∂xj
(σ2(0, θ, x) + σ2(e0, θ, x))

+
1

8π3θ3

X
k 6=0

kjkl(k · e0)
2

| k |4 (| k |2 −(1/2π)ik · e0)2
. (A 3)

The last term is convergent. To estimate ∂2S̃2/∂xl∂xj we have to estimate
∂2σ2(e0, θ, x)/∂xl∂xj .

There are two cases, one when j 6= l and the other when j = l. We analyse the first
case; the analysis of the second is similar. For j 6= l

∂2σ2(e0, θ, x)

∂xl∂xj
=

∂2

∂xl∂xj

(
π2α2

Γ (2)

"
α−3/2θ3

X
n

Z ∞
1

ξ−3/2 exp

�
−π | x−xn−

α

4πξ
e0 |2

ξ

α

�
dξ

+
X
k 6=0

e−2πix·k
Z ∞

1

ξ exp
�
−πα | k |2 ξ + 1

2
αi(k · e0)ξ

�
dξ

��

= 4π4

"
α−3/2θ3

X
n

Z ∞
1

ξ1/2

�
xj − xnj −

α

4πξ
e0j

��
xl − xnj −

α

4πξ
e0l

�
× exp

�
−π | x− xn −

α

4πξ
e0 |2

ξ

α

�
dξ

−α2
X
k 6=0

kjkle
−2πik·x

Z ∞
1

ξ exp
�
−πα | k |2 ξ + 1

2
αi(k · e0)ξ

�
dξ

#
. (A 4)
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Letting |x| → 0 we get

lim
|x|→0

∂2σ2(e0, θ, x)

∂xl∂xj
= 4π4α−3/2θ3

�
lim
|x|→0

xjxl

Z ∞
1

ξ1/2 exp

�
−π | x− α

4πξ
e0 |2

ξ

α

�
dξ

− α

4π
lim
|x|→0

(xje0l + xle0j)

Z ∞
1

ξ−1/2 exp

�
−π | x− α

4πξ
e0 |2

ξ

α

�
dξ

�
+ C ′lj (A 5)

where C ′lj is a constant related to the first three terms of (6.25). To estimate the rest
of the above expression let

ϕ(e0, x) = α−3/2

Z ∞
1

ξ1/2 exp

�
−π | x− α

4πξ
e0 |2

ξ

α

�
dξ.

After some transformations similar to the ones for f(e0, x), we have

ϕ(e0, x) =
ex/2·e0

2π|x|3
2

π1/2

Z ∞
π|x|2/α

t1/2 exp

�
−t− |x|

2

16πt

�
dt.

We note that

ψ(s) =
2

π1/2

Z ∞
s2
t1/2 exp

�
−t− s2

16πt

�
dt

is an even function of s and ψ(0) = 1. Thus

ψ(s) = 1 + O(s2),

and hence

ϕ(e0, x) =
1

2π|x|3 (1 + 1
2
x · e0 + O(|x|2)).

From this last estimate and (A 2) we arrive at

∂2σ2(e0, θ, x)

∂xl∂xj
= 4π3θ3

�
xjxl

2|x|3 +
xjxl(x · e0)

4|x|3

�
−π3xjeol + xle0j

|x| + C ′lj + O(|x|), (A 6)

where j 6= l. This expression and the analogous one for j = l give us (6.22).

Appendix B. Consistency calculations
Case 1. First we analyse (7.4) when θ = Re/a→ 0. This means that inertial effects

are negligible so our result should tend to the Hasimoto’s formula (1.4), and this is
what we show here.

In terms of a, F is

F = 6πe0

(
I + a · 3

8
θI + a · 3

2
θ(CI +M)

�
+ ... .

To show that this tends to Hasimoto’s formula as θ → 0, we note that the Oseen
term 3

8
θI disappears and the other term is handled by the following Lemma.

Lemma 1. As θ → 0, θC → 1.7601(4π/3)1/3 and θM → − 1
3
× 1.7601(4π/3)1/3I

Proof. We give the details only for the first part since the other is similar. From
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Figure 5. The flow domain in a period cell in terms of outer variables

(6.23), we have

θC =
2θ

α1/2
e−α/16π +

α

θ2
− θ

α1/2

X
l 6=0

Z ∞
1

ξ−1/2 exp

�
−π | l +

α

4πξθ
e0 |2

ξθ2

α

�
dξ

− α

θ2

X
l 6=0

Z ∞
1

exp

�
−π α

θ2
|l|2ξ +

1

2

α

θ
i(l · e0)ξ

�
dξ,

where l is in the integer lattice now. Note that α is a constant which we can change
without affecting this. Thus, we may take α = θ2 and then

θC = 2e−θ
2/16π + 1−

X
l 6=0

Z ∞
1

ξ−1/2 exp

�
−π | l +

θ

4πξ
e0 |2 ξ

�
dξ

−
X
l 6=0

Z ∞
1

exp
�
−π|l|2ξ + 1

2
θi(l · e0)ξ

�
dξ.

After some manipulation this becomes

θC = 3−
X
l 6=0

Z ∞
1

ξ−1/2e−π|l|
2ξdξ −

X
l 6=0

Z ∞
1

e−π|l|
2ξdξ,

as θ → 0 and the right-hand side is approximately 1.7601(4π/3), as shown by
Hasimoto (1959).

Case 2. We analyse (7.4) when θ →∞. Since we require Re to be small, this means
that the particle radius a is infinitesimal and so particle interaction is negligible. Our
result (7.4) should reduce to Oseen’s formula (1.3), and this is what we show now.

Lemma 2. As θ →∞, C → 0 and M → 0.

Before proving this lemma we will look again at the the way we analysed the outer
problem in §5. When we apply Hasimoto’s method to the Oseen region (the outer
region), we consider the whole Stokes region around each particle as an ‘effective’
particle (figure 5). It is clear from the figure that the radius of this ‘effective’ particle
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is the Oseen distance θRe. In our analysis, we take θ to be of order one, so the
dimensionless radius is small as long as Re � 1. But when we let θ → +∞, the
radius a may also be large. This must be controlled so as not to invalidate the
approximations in Hasimoto’s method which require that the radius be small. So we
let θ → +∞ to recover the Oseen’s case from our results, but we keep the ‘effective’
particle size small, i.e. θRe� 1.

We take these remarks into account by choosing new outer variables

x̃ =
x

θ
, F̃ =

F

θ
, p̃ = θp.

Equation (6.1) takes the form

∇̃2
U 1 − ∇̃P1 = θRe(e0 · ∇̃)U 1 + F

X
n

δ(x̃− x̃n),

∇̃ ·U 1 = 0.

9>=>; (B 1)

We now repeat the previous analysis for this equation. We get exactly the same result
(7.2), except that in formula (6.23)–(6.25) for C and M , θ is replaced by 1/Re, and e0

is replaced by θRee0. Now θRe enters as a parameter. To keep the notation simple
we denote 1/Re by θ again, and θRee0 by βe0/θ, where θ � β → +∞. Instead of
proving Lemma 2 to recover Oseen’s formula, we now prove the following.

Lemma 3. C → 0 and M → 0 as θ � β → +∞, where in (6.23)–(6.25) for C and
M , e0 is substituted by βe0/θ.

Proof. First we show that C → 0. We have

C =
2

α1/2
e−α/16π +

α

θ3
− 1

α1/2

X
l 6=0

Z ∞
1

ξ−1/2 exp

�
−π | l +

αβ

4πξθ2
e0 |2

ξθ2

α

�
dξ

− α

θ3

X
l 6=0

Z ∞
1

exp

�
−π α

θ2
|l|2ξ +

1

2

αβ

θ2
i(l · e0)ξ

�
dξ, (B 2)

where l is an integer-valued vector. We choose α = θ. Then

C =
2

θ1/2
e−θ/16π +

1

θ2
− 1

θ1/2

X
l 6=0

Z ∞
1

ξ−1/2 exp

�
−π | l +

e0β

4πξθ
|2 ξθ

�
dξ

− 1

θ2

X
l 6=0

Z ∞
1

exp

�
−π 1

θ
|l|2ξ +

β

2θ
i(l · e0)ξ

�
dξ. (B 3)

We can now show C → 0 as θ → ∞. The first two terms go to zero, clearly. We
assume that θ > 1 and estimate the first sum as follows:

Sum1 =

����� 1

θ1/2

X
l 6=0

Z ∞
1

ξ−1/2 exp

�
−π | l +

βe0

4πθξ
|2 ξθ

�
dξ

�����
<

1

θ1/2

X
l 6=0

Z ∞
1

ξ−1/2 exp

�
−π | l +

e0

4πγξ
|2 ξ
�

dξ =
K

θ1/2
(γ → +∞)

for some constant K which does not depend on θ. So this term vanishes like θ−1/2 as
θ →∞.
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The last term is more difficult. We begin with the estimate

Sum2 =

����� 1

θ2

X
l 6=0

Z ∞
1

exp

�
−π 1

θ
|l|2ξ +

β

2θ
i(l · e0)ξ

�
dξ

�����
6

1

θ2

X
l 6=0

Z ∞
1

exp

�
−π 1

θ
|l|2ξ

�
dξ

=
1

πθ

X
l 6=0

exp
�
−π 1

θ
|l|2
�

|l|2 .

Since f(t) = e−(π/θ)t/t > 0, for t > 0, and decreases with t, we can estimate the last
sum by comparison with an integral

X
l 6=0

exp
�
−π 1

θ
|l|2
�

|l|2 6

Z Z Z
R3

exp
�
−π 1

θ
|x|2
�

|x|2 dV

=

Z 2π

0

Z π

0

Z ∞
0

exp
�
−π 1

θ
r2
�

r2
r2 sin αdrdαdβ

= Kθ1/2,

where K is again a constant not depending on θ. Therefore

Sum2 6
1

πθ
Kθ1/2 → 0

as θ →∞ and C → 0.

To show that M → 0, it is enough to show that Cjj → 0. We replace in (6.24) e0 by
βe0/θ, let α = θ, and remove the θ dependence of xn and k. Then

Cjj = − 1

2θ1/2
(1 + e−θ/16π)− θ1/2

32π

�
β

θ

�2

e2
0j

Z ∞
1

ξ−3/2e−θ/16πξdξ

− π

2θθ1/2

X
l 6=0

Z ∞
1

ξ1/2

"
θ2l2j e

−πθ|l|2ξ +θ2

�
lj +

β

4πθξ
e0j

�2

exp

�
−π|l+ β

4πθξ
e0|2θξ

�#
dξ

+
1

4θ1/2

X
l 6=0

Z ∞
1

ξ1/2

�
e−πθ|l|

2ξ + exp

�
−πθ | l +

β

4πθξ
e0 |2 ξ

��
dξ

+
π

2θ3

X
l 6=0

l2j

Z ∞
1

ξe−π|l|
2/θξ(1 + exp

�
β

2θ
i(l · e0)ξ)

�
dξ

+
1

8π3θ

X
l 6=0

l2j (βl · e0)
2

| l |4 (| l |2 −(1/2π)iβl · e0)2
(j = 1, 2, 3).

Only the second and last terms need analysis. The other terms can be handled in the
same way as in showing C → 0.



210 H. Cheng and G. Papanicolaou

For the second term, we note that

θ1/2

Z ∞
1

ξ−3/2e−θ/16πξdξ =

Z ∞
1

�
ξ

θ

�−3/2

e−θ/16πξd

�
ξ

θ

�
=

Z ∞
1/θ

s−3/2e−1/16πsds

6

Z ∞
0

s−3/2e−1/16πsds = K

where K is some constant not depending on θ. So this term will vanish as β/θ → 0
(β � θ).

We consider now the last term and take e0 = (1, 0, 0) for simplicity. We have,
therefore

Sum3 =
1

8π3θ

X
l 6=0

l2j (βl1)
2

| l |4 (| l |2 −(1/2π)iβl1)2
,

to be estimated for θ � β → +∞. We show that����� 1βX
l 6=0

l2j (βl1)
2

| l |4 (| l |2 −(1/2π)iβl1)2

����� 6 K (B 4)

as β → +∞, for some constant K that does not depend on β.

With this estimate, it is clear that |Sum3| = O(β/θ) → 0 as θ � β → +∞ and the
proof of Lemma 3 is complete.

To prove (B 4), we will prove the slightly stronger estimate

Sum =

����� 1βX
l1>0

X
l2 ,l3

(βl1)
2

| l |2 (| l |2 −iβl1)2

����� 6 K
as β → +∞ and again K does not depend on β. We split the sum into two parts:

Sum 6
1

β

X
l1>0

X
|l|2>βl1

(βl1)
2

| l |2 | | l |2 −iβl1|2
+

1

β

X
l1>0

X
|l|26βl1

(βl1)
2

| l |2 | | l |2 −iβl1|2

= (I) + (II).

Consider (II) first. We have

βl1 − l21 > l22 + l23 > 0,

so that l1 6 β. Thus

(II) 6
1

β

X
0<l16β

X
l2
2
+l2

3
6βl1−l21

1

|l|2 6
K

β

X
0<l16β

Z βl1−l21

0

dr2

l21 + r2

6
K

β

X
0<l16β

log
β

l1
6
K

β

Z β

1

log
β

x
dx 6 K

Z 1

0

log
1

t
dt = K.

Here K stands for different constants that do not depend on β.
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Consider (I). We have

(I) 6
1

β

X
l1>0

X
l2
2
+l2

3
>βl1−l21

(βl1)
2

|l|6

6
1

β

X
l1>β

X
l2 ,l3

(βl1)
2

|l|6 +
1

β

X
l1<β

X
l2
2
+l2

3
>βl1−l21

(βl1)
2

|l|6

6
K

β

X
l1>β

(βl1)
2

Z ∞
0

dr2

(l21 + r2)3
+
K

β

X
l1<β

(βl1)
2

Z ∞
βl1−l21

dr2

(l21 + r2)3

6
K

β

X
l1>β

(βl1)
2 1

l41
+
K

β

X
l1<β

(βl1)
2 1

(βl1)2
6 Kβ

X
l1>β

1

l21
+K

6 Kβ

Z ∞
β

dx

x2
+K = K,

and again K denotes constants independent of β. So this term is also bounded and
the proof of (B 4) complete.
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